
1

CS-200
Computer Architecture

—
Part 2d. Processor, I/Os, and Exceptions

Exceptions

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Exceptions, Interrupts, Faults,
Traps, Checks, etc.

• Normally control flow (= sequence of the instructions to be executed) is
completely under the control of the programmer who specifies jumps,
branches, procedure calls, etc.

• “Exceptions” are… the exception!
– Control flow changes that are not explicit in the program and triggered by special

conditions
– Exception handlers are special functions that take appropriate actions when an

exception arises
– Example already seen: I/O Interrupts

3

Exceptions, Interrupts, Faults,
Traps, Checks, etc.

• Naming varies widely across systems!
• Our convention (RISC-V, COD)

– Exceptions: general name for all of them
– Interrupts: special exceptions generated outside of the processor

• Thus, interrupts are the only form of exception that we have met
so far

4

Undefined Instruction

Controller

IR

Plenty of
control
signals

The instruction
in IR is undefined!

undef

PC

Next PC
Logic

PC,
branch logic,

ALU result

Exception Handler Address

IRQ

0

1

Save the next PC

IRQ

An exception!
We could use this signal to halt the

processor, but this is more versatile…

5

Undefined Instruction

• But now this new exception is synchronous
– It does not happen at some random point in our code (as an I/O

interrupt), but at a very specific point (where the undefined
instruction is!...)

– Synchronous means that if I run the program again from the very same
starting state, the exception occurs every time

• We could serve it (that is, jump to the handler) at any point in
the future (see I/O interrupts) but if we could guarantee to serve
it before the next instruction, we could do cool stuff…

6

An Optional fadd.s Instruction

• Suppose we want to have a FP add instruction:
fadd.s rd, rs1, rs2

• Some processors could have a special ALU supporting this
instruction; cheaper processors do not support it

• What of those that do not? They will trigger an undefined
instruction exception leading to the execution of a handler

• How can we “handle” things? Emulate…

This is not the real fadd.s instruction
of RISC-V but the idea is the same…

7

Outline of Undefined Instruction Handler

1. Save on the stack all registers we and our callees will modify
– Remember: calling conventions do not apply!

2. Get the instruction where the problem happened
– If the PC has been saved somewhere, we can load from that address

3. Decode in software the instruction and determine that it is an fadd.s
4. Read the source registers (operands) and call a library (or write the

code) to perform the FP addition
5. Store the result in the destination register
6. Increment the PC of the failed fadd.s to point to the next instruction
7. Jump there to continue execution

8

Exceptions, Interrupts, Faults,
Traps, Checks, etc.

• Why one needs these “exceptions”?
– Input/output request

• Data are requested or new inputs should be processed
– Timer interrupts
– Unsupported or undefined instructions

• E.g., missing floating-point support in an implementation
– Arithmetic faults

• The operation is not defined on specific operands (e.g., division by zero)
– Memory protection violation

• A user tries to read/write data belonging to another user (we will talk at length about this later!)
– Debugging, breakpoints, etc.
– Hardware malfunctions, power failures, etc.

9

Exceptions, Interrupts, Faults,
Traps, Checks, etc.

• Three possible dimensions:
– Synchronous or asynchronous

• Related to a given instruction with some specific data or external?

– User requested or coerced
• Software interrupts?

– Resume or terminate
• Possibility of resuming the execution after exception?

• Some choices are a matter of policy (e.g., OS):
– Switch off system if power failure

• Disk state is clean but current work lost

– “Hibernate” system if power failure
• Disk state is clean and session is preserved, but is there time?!

1
0

A Possible Classification of Exceptions

Type Synchronous? Coerced? Resume?
I/O request Asynchronous Coerced Resume
Invoke OS Synchronous User requested Resume
Trace instruction Synchronous User requested Resume
Breakpoint Synchronous User requested Resume
Page fault Synchronous Coerced Resume
Misaligned access Synchronous Coerced Resume
Memory protection violation Synchronous Coerced Terminate

Bus error Synchronous Coerced Terminate

Arithmetic fault Synchronous Coerced Terminate

Undefined instruction Synchronous Coerced Terminate

Hardware malfunction Asynchronous Coerced Terminate

Power failure Asynchronous Coerced Terminate

1
1

Watchpoint

PC

Next PC
Logic

PC,
branch logic,

ALU result

Exception Handler Address

IRQ

0

1

Save the next PC

IRQ

Register
Fileaw

wren
wrdata

undefAnother exception!

Register Value

= =

Special registers writable by the user

An instruction wrote “Value” in “Register”

1
2

Raising Exceptions

• The address of the current or next instruction must be saved somewhere,
but it cannot be in ra (or where the ordinary return is saved) Where?
– A “(next) PC at the time of the exception” or Exception PC (EPC) register
– We need a special instruction or procedure to return using the EPC

• There are many causes possible now What happened?
– One handler address and cause register
– A vector of handlers, one per cause

• A nested interrupt/exception may appear while handling one What
happens?
– Disable the ones that can be disabled (e.g., interrupts)
– Avoid those that cannot (e.g., divide by zero or undefined instruction)

1
3

Assessing the Position of Exception

• For asynchronous exceptions
– What is the next instruction to execute?

• For synchronous exceptions
– What is the instruction that faulted?

• We will restart from that one if we want to correct something and retry (e.g., invoking the OS, see later)
• We will restart from the next one if we implement the functionality otherwise (e.g., undefined instruction

emulated in software)

• Various solutions
– Reserve a dedicated ordinary register for EPC (e.g., Nios II)
– Place EPC on the stack (e.g., x86)
– Have a set of special registers dedicated to exception handling and special instructions to

access them (e.g., MIPS, RISC-V)

1
4

Assessing the Cause of Exception

• How is the control passed to the handler?
– Single handler with cause register (e.g., RISC-V, MIPS)

• Processor executes a jump to a fixed address
• Handler does the dispatching in software by reading a special cause register

– Vector of handler addresses (e.g., RISC-V, 68k)
• Processor executes a jump to mem[Exception Vector Address + (4 × Exception Number)]

– Vector of handlers (e.g., PA-RISC 2.0, SPARC)
• Processor executes a jump to Exception Vector Address + (32 × Exception Number)

j FPU_Emulator

Addr[IO_Handler]
Addr[FPU_Emulator]

Addr[PageFault_Handler]
Addr[Arithmetic_Handler]

0:
4:
8:

12:

…
FPU_Emulator: (code…)

PageFault_Handler:

…
j FPU_Emulator_cont

…

28:
32:
36:

…
60:
64:

1
5

RISC-V Machine-Mode Exception Handling

Control and
Status Registers

(CSRs)

Instructions
to access the

special registers

A special ret

1
6

RISC-V Machine-Mode Exception Handling

Pseudoinstructions:

Simply read and write csr

1
7

RISC-V Machine-Mode Exception Handling

• mtvec (Machine Trap Vector)
 holds the address the processor jumps to when an exception occurs

• mepc (Machine Exception PC)
 points to the instruction where the exception occurred (not executed)

• mcause (Machine Exception Cause)
 indicates which exception occurred

Often just a constant value to jump to,
but it could implement vectored interrupts

1
8

mcause[31] mcause[30..0]

RISC-V Interrupt and Exception Codes

I/O Interrupts

Memory management
(we will come back to these)

1
9

Possible Undefined Instruction Handler
handler: addi sp, sp, -128 # Save all registers but sp (leaving space in memory so that it is a regular array)

sw x0, 0(sp)
sw x1, 4(sp)
sw x3, 12(sp)

… etc. …
sw x31, 124(sp)

csrr a1, mcause # Read exception cause
bltz a1, interrupt # Branch if not an exception (MSB = 1, looks like a negative number…)
li a2, 2 # a2 = illegal instruction cause
bne a1, a2, otherExcp # Branch if not an illegal instruction exception

csrr t0, mepc # Load the current faulting instruction address
lw a0, 0(t0) # Read the faulty instruction
jal decodeInst # Gets a0 = instruction; returns a0 = 0 if it cannot be emulated or a0 = operation, a1, a2, and a3 = index of rs1, rs2, and rd
beqz a0, undefinedInst # Branch if really undefined and not possible to emulate
mv s0, a3 # Save index of rd

… etc. … # Read from the stack the content of the original registers pointed by a1 and a2 into a1 and a2 (“read the source registers”)
jal emulateInst # Gets a0 = operation, a1, a2 = operands; returns a0 = FP result

… etc. … # Write a0 on the stack into original register pointed by s0 (“write the destination register”)

lw x1, 4(sp) # Restore all registers but zero and sp
… etc. …

lw x31, 124(sp)
addi sp, sp, 128

csrr t0, mepc # Load the current faulting instruction address
addi t0, t0, 4 # Increment to point to the next instruction (4 bytes for RV32/RV64)
csrw mepc, t0 # Write the updated value back to me
mret

Read the EPC in mepc

Adjust the mepc to execute the
instruction following the faulty one next

Use mret to return

Read the exception cause in mcause

2
0

RISC-V Machine-Mode Interrupt Handling

mie (Machine Interrupt Enable)
 lists which interrupts the processor can take and which it must ignore

– MEIE: Interrupt-enable bit for machine-level external interrupts
– MTIE: Interrupt-enable bit for machine timer interrupts

mip (Machine Interrupt Pending)
 lists the interrupts currently pending

– MEIP: Interrupt-pending bit for machine-level external interrupts
– MTIP: Interrupt-pending bit for machine timer interrupts

mstatus (Machine Status)
 holds the global interrupt enable, along with other state

– MIE: Interrupts are globally enabled when MIE = 1 and globally disabled when MIE = 0.
– MPIE: MPIE holds the value of MIE prior to the trap.

The subset we
use in CS-200

2
1

Remember?

…
3968
3972
3976
3980
3984
3988
3992
3996
4000
4004
…

x2!

We will definitely need to find a solution!
(In a few weeks’ time…)

Limit

2
2

Stack-Full Detection?

PC

Next PC
Logic

PC,
branch logic,

ALU result

Exception Handler Address

IRQ

0

1

Save the next PC

IRQ

Register
Fileaw

wren
wrdata

undef

sp (=x1) Limit

= <

watch
Ok, but we will do better…

2
3

Writing Handlers Is Very Very Tricky!

• Notice the problem of writing the handler for the above: we cannot use the stack!

• In general, one cannot touch any register and, maybe, one cannot touch the stack…
• Various solutions:

– Reserved ordinary registers as in MIPS ($k0 and $k1)
– Shadow registers in old processors (early x86 and before)
– Automatic switch to a known safe stack in x86

RISC-V solution is one dedicated CSR:
• mscratch (Machine Scratch) [not represented in the slide above]

 holds one word of data for temporary storage
• Can be used to store a pointer to an empty region of memory or to a known safe stack

2
4

Speaking of the Stack…

funct: addi sp, sp, -12
sw ra, 0(sp)
sw s0, 4(sp)
sw s1, 8(sp)

… etc. …

lw ra, 0(sp)
lw s0, 4(sp)
lw s1, 8(sp)
addi sp, sp, 12
ret

funct: sw ra, -12(sp)
sw s0, -8(sp)
sw s1, -4(sp)
addi sp, sp, -12

… etc. …

addi sp, sp, 12
lw ra, -12(sp)
lw s0, -8(sp)
lw s1, -4(sp)
ret

?
=

2
5

Protection: I/Os Are Not for Everyone!

If it is a memory access to
a particular address…

Mode 0 = superuser
1 = user

… and it is being executed by an ordinary user exception!

PC

Next PC
Logic

PC,
branch logic,

ALU result

Exception Handler Address

IRQ

0

1

Save the next PC

IRQundef

watch

Controller

IR

Plenty of
control
signals

ALU

0x1000 0000 =

mem access

stack

Address of
a peripheral

lw t5, 0(t7)

2
6

Levels of Privilege = Processor Modes
1. Distinguish at least two processor modes:

– User mode for the user’s programs
– Kernel, Supervisor, Executive, etc. for the OS (kernel)
– RISC-V has up to three: Machine, Supervisor, User

2. Have a part of the processor state readable by all, but only writable with highest
levels of privilege; at least a

– Current mode register
– Other configuration registers (we will see some when discussing the Memory Hierarchy…)

3. Methods to switch mode back and forth
– (i) A dedicated instruction to trigger a software exception and (ii) an instruction to reset
– RISC-V has ecall (system call) and mret/sret (return from exception)

2
7

Processor Tasks on Exception
• What the processor should or could do when an exception is raised (depending on

processors and types of exceptions):
1. Mask further interrupts
2. Save EPC
3. Save information on the reason for the exception
4. Modify privilege level (exception handlers run in some privileged mode)
5. Free up some registers (e.g., copying them to shadow registers, where supported)
6. Jump to the handler

• Most or all of these tasks are reverted implicitly with special instructions on exit
– mret in RISC-V reverts the privilege level and the interrupt enable

• Some have to be reverted explicitly by the handler
– Programmers may want to unmask further interrupts as soon as it is safe

2
8

Priorities

• We have seen that hardware interrupt controllers can help managing
priorities (which interrupt is more urgent to serve?)

• Yet, this only affects the order IRQs are presented to the processor. But we
may also want to serve a high-priority interrupt while serving a lower-
priority one

• Alas, there is only one mepc and mcause register, and this is why, as soon
as the processor takes an interrupt, it must disable further interrupts

• What can we do?
– Save critical information about the interrupt (mepc, mcause, mstatus) on some

safe stack, so that CSRs can be overwritten by further interrupts
– Manually reenable interrupts (mstatus) without returning from the handler

2
9

Writing Handlers Is Very Very Tricky!

• Writing exception handlers is a difficult task!
– Maybe the stack cannot be used (e.g., the exception results from a stack overflow)
– Maybe the exception handler cannot be interrupted (e.g., the handler uses static

locations to save data including mscratch and is therefore a nonreentrant
procedure)

– Maybe the system cannot withstand not serving interrupts for a long time (e.g.,
I/Os buffers fill up)

• Buggy device drivers from vendors of peripherals (invoked by the
interrupt handler of the operating system and running in some privileged
mode) are often responsible for operating system instability
 This is why Microsoft formally verifies and certifies device drivers

3
0

Processor Design Issues with Exceptions

• Handling exceptions is one of the biggest challenges of high-performance
processor design

• Great difficulties in determining the exact state of execution and
supporting a precise restart mechanism

• Older processors did not support at all precise exceptions—every
exception was a terminating one, and thus things were easy

• More later in CS-200 and in elective courses…

3
1

Back to Our A/D Converter

poll: lw t0, 4(t1) # t0 = DV signal
beqz t0, poll # wait until done

Inefficient!

3
2

Example:
Better A/D Converter Interface

• Improve the interface to the A/D converter so that:
– Any access (R or W) to address 0xFFFFF0 starts a new conversion
– Upon completion, the A/D converter raises an interrupt through the appropriate

interrupt request signal of the processor
– The result of the conversion can be read by the processor at address 0xFFFFF8

3
3

Example:
Simple IREQ and IACK Mechanism

• Suppose that our 8-bit processor has an internal interrupt controller with
various IREQ/IACK signal pairs for I/O interrupt requests

• We have been assigned for our ADC these:
– IREQ3: input; dedicated to our peripheral to request attention
– IACK3: output; used by the processor to signal to our peripheral that the request is

acknowledged and is being served

Is activated
asynchronously

Remains active until
acknowledged

Is also deactivated
asynchronously

3
4

Circuit with IREQ/IACK

3
5

A Better A/D Converter Interface

3
6

A/D Converter: startADC

startADC: lui t0, 0xfff
addi t0, t0, 0xff0 # t0 = 0xfffff0
sw zero, 0(t0) # start conversion

ret

3
7

Software: handler
mcause31

3
8

A/D Converter: handler
handler: addi sp, sp, -120 # Save all registers but zero and sp

sw x1, 0(sp)
sw x3, 4(sp)

… etc. …
sw x31, 116(sp)

csrr s0, mcause # Read exception cause
bgez s0, handleExceptions # Branch if not an interrupt (MSB = 0, looks like zero or a positive number…)
slli s0, s0, 1 # Get rid of the MSB of s0, so that what is left is the cause
srli s0, s0, 1
li s1, 11 # s1 = external interrupt cause
bne s0, s1, handleOtherInts # Branch if not an external interrupt

jal readADC # Returns a0 = ADC result
jal insertIntoBuffer # Gets a0 = value to add to a circular buffer

restore: lw x1, 0(sp) # Restore all registers but zero and sp
lw x3, 4(sp)

… etc. …
lw x31, 116(sp)
addi sp, sp, 120

mret

3
9

A/D Converter: readADC

readADC: li t0, 0xfffff0 # t0 = 0xfffff0
lw a0, 8(t0) # get ADC data output

ret

4
0

A/D Converter: insertIntoBuffer
.section .data

.equ bufferSize, 1024 # Define buffer size (must be a power of two)

.equ bufferBytes, bufferSize * 4 # Compute the total size in bytes for the buffer
bufferPointer: .word 0 # Initialize the pointer to index 0
buffer: .space bufferBytes # Allocate space for bufferSize * wordSize bytes

.section .text
insertIntoBuffer: la t0, bufferPointer # Load address of bufferPointer into t0

lw t1, 0(t0) # Load current buffer pointer into t1
la t2, buffer # Load base address of the buffer into t2
slli t3, t1, 2 # Multiply buffer pointer (t1) by 4 to get byte offset
add t4, t2, t3 # Add offset to buffer base address (= next word)
sw a0, 0(t4) # Store a0 into buffer at calculated position
addi t1, t1, 1 # Increment buffer pointer by 1
li t5, bufferSize - 1 # Load bufferSize - 1 into t5 (mask for power of 2)
and t1, t1, t5 # Apply bitwise AND to wrap around
sw t1, 0(t0) # Store updated buffer pointer

ret

4
1

References

• Patterson & Hennessy, COD – RISC-V Edition
– Chapter 4; Section 4.10 only until p. 335.
– Chapter 5; Section 5.10 only bottom of p. 458 and bottom of p. 460,

and Section 5.14 (not the fence stuff).

	CS-200�Computer Architecture�—�Part 2d. Processor, I/Os, and Exceptions�Exceptions
	Exceptions, Interrupts, Faults, �Traps, Checks, etc.
	Exceptions, Interrupts, Faults, �Traps, Checks, etc.
	Undefined Instruction
	Undefined Instruction
	An Optional fadd.s Instruction
	Outline of Undefined Instruction Handler
	Exceptions, Interrupts, Faults, �Traps, Checks, etc.
	Exceptions, Interrupts, Faults, �Traps, Checks, etc.
	A Possible Classification of Exceptions
	Watchpoint
	Raising Exceptions
	Assessing the Position of Exception
	Assessing the Cause of Exception
	RISC-V Machine-Mode Exception Handling
	RISC-V Machine-Mode Exception Handling
	RISC-V Machine-Mode Exception Handling
	RISC-V Interrupt and Exception Codes
	Possible Undefined Instruction Handler
	RISC-V Machine-Mode Interrupt Handling
	Remember?
	Stack-Full Detection?
	Writing Handlers Is Very Very Tricky!
	Speaking of the Stack…
	Protection: I/Os Are Not for Everyone!
	Levels of Privilege = Processor Modes
	Processor Tasks on Exception
	Priorities
	Writing Handlers Is Very Very Tricky!
	Processor Design Issues with Exceptions
	Back to Our A/D Converter
	Example: �Better A/D Converter Interface
	Example:�Simple IREQ and IACK Mechanism
	Slide Number 34
	A Better A/D Converter Interface
	A/D Converter: startADC
	Slide Number 37
	A/D Converter: handler
	A/D Converter: readADC
	A/D Converter: insertIntoBuffer
	References

