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Exceptions, Interrupts, Faults,
Traps, Checks, etc.

Normally control flow (= sequence of the instructions to be executed) is
completely under the control of the programmer who specifies jumps,
branches, procedure calls, etc.

“Exceptions” are... the exception!

— Control flow changes that are not explicit in the program and triggered by special
conditions

— Exception handlers are special functions that take appropriate actions when an
exception arises

— Example already seen: 1/O Interrupts




Exceptions, Interrupts, Faults,
Traps, Checks, etc.

* Naming varies widely across systems!

* Our convention (RISC-V, COD)

— Exceptions: general name for all of them
— Interrupts: special exceptions generated outside of the processor

* Thus, interrupts are the only form of exception that we have met
so far




Undefined Instruction

Save the next PC

Controller | —3 Next PC _L
—> Plenty of branch Ioglc . 0
_>5 ety o ALU result Logic PC —
R S ¢ control
IR i —> signals Exception Handler Address —>{ 1
ﬁ J
undef

IRQ

The instruction
in IR is undefined!

An exception!

We could use this signal to halt the
processor, but this is more versatile...




Undefined Instruction

* But now this new exception is synchronous

— It does not happen at some random point in our code (as an I/O
interrupt), but at a very specific point (where the undefined

instruction is!...)

— Synchronous means that if | run the program again from the very same
starting state, the exception occurs every time

* We could serve it (that is, jump to the handler) at any point in
the future (see 1/0O interrupts) but if we could guarantee to serve
it before the next instruction, we could do cool stuff...




An Optional fadd.s Instruction

Suppose we want to have a FP add instruction:
fadd.s rd, rsl, rs2 <

Some processors could have a special ALU supporting this
instruction; cheaper processors do not support it

What of those that do not? They will trigger an undefined
instruction exception leading to the execution of a handler

How can we “handle” things? Emulate...

This is not the real fadd. s instruction
of RISC-V but the idea is the same...




Outline of Undefined Instruction Handler

Save on the stack all registers we and our callees will modify

— Remember: calling conventions do not apply!

Get the instruction where the problem happened
— If the PC has been saved somewhere, we can load from that address

Decode in software the instruction and determine that it is an fadd.s

Read the source registers (operands) and call a library (or write the
code) to perform the FP addition

Store the result in the destination register
Increment the PC of the failed fadd.s to point to the next instruction

. Jump there to continue execution




Exceptions, Interrupts, Faults,
Traps, Checks, etc.

 Why one needs these “exceptions”?
— Input/output request
e Data are requested or new inputs should be processed
— Timer interrupts
— Unsupported or undefined instructions
* E.g., missing floating-point support in an implementation
— Arithmetic faults
* The operation is not defined on specific operands (e.g., division by zero)

— Memory protection violation
* A user tries to read/write data belonging to another user (we will talk at length about this later!)

— Debugging, breakpoints, etc.
— Hardware malfunctions, power failures, etc.




Exceptions, Interrupts, Faults,
Traps, Checks, etc.

* Three possible dimensions:

— Synchronous or asynchronous

* Related to a given instruction with some specific data or external?

— User requested or coerced

» Software interrupts?

— Resume or terminate

* Possibility of resuming the execution after exception?

 Some choices are a matter of policy (e.g., OS):
— Switch off system if power failure
* Disk state is clean but current work lost

— “Hibernate” system if power failure

* Disk state is clean and session is preserved, but is there time?!




A Possible Classification of Exceptions

Synchronous? Coerced? Resume?
|/O request Asynchronous Coerced Resume
Invoke OS fSynchronous\ (User requestedN Resume
Trace instruction Synchronous User requested Resume
Breakpoint Synchronous \User requested) Resume
Page fault Synchronous Coerced Resume
Misaligned access Synchronous Coerced . Resume
Memory protection violation Synchronous Coerced Terminate
Bus error Synchronous Coerced Terminate
Arithmetic fault Synchronous Coerced Terminate
Undefined instruction \.Synchronous / Coerced Terminate
Hardware malfunction Asynchronous Coerced Terminate

Power failure Asynchronous Coerced Terminate




Watchpoint

Save the next PC

—>
—3 : Next PC _L
—3 Register — branch Ioglc { — Logi 0
>| aw File ALU result OgIC

—.—o—> wren > PC -
o—>| wrdata Exception Handler Address —>{ 1

. < ~ Special registers writable by the user

Register Value P & y

IRQ

Another exception! undef

i An instruction wrote “Value” in “Register”




Raising Exceptions

 The address of the current or next instruction must be saved somewhere,
but it cannot be in ra (or where the ordinary return is saved) 2 Where?
— A “(next) PC at the time of the exception” or Exception PC (EPC) register
— We need a special instruction or procedure to return using the EPC

* There are many causes possible now = What happened?
— One handler address and cause register
— A vector of handlers, one per cause

* A nested interrupt/exception may appear while handling one 2> What
happens?
— Disable the ones that can be disabled (e.g., interrupts)
— Avoid those that cannot (e.g., divide by zero or undefined instruction)




Assessing the Position of Exception

* For asynchronous exceptions

— What is the next instruction to execute?

e For synchronous exceptions

— What is the instruction that faulted?
* We will restart from that one if we want to correct something and retry (e.g., invoking the OS, see later)

* We will restart from the next one if we implement the functionality otherwise (e.g., undefined instruction
emulated in software)

e Various solutions
— Reserve a dedicated ordinary register for EPC (e.g., Nios Il)
— Place EPC on the stack (e.g., x86)

— Have a set of special registers dedicated to exception handling and special instructions to
access them (e.g., MIPS, RISC-V)




Assessing the Cause of Exception

* How is the control passed to the handler?

— Single handler with cause register (e.g., RISC-V, MIPS)

* Processor executes a jump to a fixed address

* Handler does the dispatching in software by reading a special cause register
— Vector of handler addresses (e.g., RISC-V, 68k)

* Processor executes a jump to mem|[ Exception Vector Address + (4 x Exception Number) |
— Vector of handlers (e.g., PA-RISC 2.0, SPARC)

* Processor executes a jump to Exception Vector Address + (32 x Exception Number)

: 0]  Addr[l0_Handler] 28:
reeeans > 4  Addr[FPU_Emulator]  |-eeeeeees Rereaneas > 32:| FPU_Emulator: (code...)
8:| Addr[PageFault_Handler] : 36:
12:| Addr[Arithmetic_Handler]
v 60:; Jj FPU_Emulator_cont
J FPU_Emulator 64:| PageFault_Handler:




RISC-V Machine-Mode Exception Handling

Name 31 30 12 11 10 8 7 6 4 3 201 0
(| mstatus reserved MPIE | reserved | MIE reserved
Control and mie reserved MEIE | reserved | MTIE reserved
Stat Regist ) mip reserved MEIP | reserved | MTIP reserved
atus hegisters mtvee BASE MODE
(CSRS) mepc MEPC
. | mcause | Interrupt Exception Code
Instruction Pseudocode Meaning
[ csrrw rd, csr, rsl  rd <— csr; csr < rsi Read/Write CSR
Instructions csrrs rd, csr, rsl  rd <— csr; csr <— csr | rsi Read/Set Bits CSR
csrre rd, csr, rsl rd <— csr; csr < csr & (~rsi) Read/Clear Bits CSR
to access the < csrrwi rd, csr, imm rd <— csr; csr < zext(uimm) Read/Write CSR immediate
speC|aI registers csrrsi - rd, csr, imm rd <— csr; csr <— csr | zext(uimm) Read/Set Bits CSR immediate
\ csrrci rd, csr, imm rd < csr; csr < csr & (~zext(uimm)) Read/Clear Bits CSR immediate
mret mstatus.MIE < mstatus.MPIE Return from M-Mode
A Special r\et mstatus.MPIE <+ 1

Ipc <— mepc l




RISC-V Machine-Mode Exception Handling

Pseudoinstructions:

csrr rd, csT csrrs rd, csr, x0 Read CSR

CSTW CSTr, TS csrrw x0, csr, rs Write CSR

CSrs csr, IS csrrs x0, csr, rs Set bits in CSR

csrc csr, rs csrrc x0, csr, rs Clear bits in CSR

csrwi csr, imm csrrwi x0, csr, imm Write CSR, immediate
csrsi csr, imm csrrsi x0, csr, imm Set bits in CSR, immediate
csrci csr, imm csrrci x0, csr, imm Clear bits in CSR, immediate

Simply read and write csr




RISC-V Machine-Mode Exception Handling

 mtvec (Machine Trap Vector) <
= holds the address the processor jumps to when an exception occurs

* mepc (Machine Exception PC)
—> points to the instruction where the exception occurred (not executed)

 mcause (Machine Exception Cause)
— indicates which exception occurred

Often just a constant value to jump to,
but it could implement vectored interrupts




RISC-V Interrupt and Exception Codes

Interrupt / Exception Exception Code

Description
mcause[31] mcause[30..0]

Supervisor software interrupt
Machine software interrupt
Supervisor timer interrupt
Machine timer interrupt
Supervisor external interrupt
Machine external interrupt
Instruction address misaligned
Instruction access fault

[llegal instruction

Breakpoint

Load address misaligned

Load access fault

Store address misaligned

Store access fault

Environment call from U-mode
Environment call from S-mode
Environment call from M-mode
Instruction page fault

Load page fault

Store page fault

/O Interrupts

L

Memory managenjent
(we will come back tg these)
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handler:

Possible Undefined Instruction Handler

— Read the exception cause in mcause

Read the EPC in mepc

Gets a@ = instruction; returns a@ = @ if it cannot be emulated or a@ = operation, al, a2, and a3 = index of rsil, rs2, and rd

Read from the stack the content of the original registers pointed by al and a2 into al and a2 (“read the source registers”)

Adjust the mepc to execute the

instruction following the faulty one next

addi sp, sp, -128 # Save all registers but sp (leaving space in memory so that it is a regular array)
sw X0, 0(sp)
sw x1, 4(sp)
sw x3, 12(sp)
. etc. ..
sw x31, 124(sp)
csrr al, mcause # Read exception cause
bltz al, interrupt # Branch if not an exception (MSB = 1, looks like a negative number..)
1i a2, 2 # a2 = illegal instruction cause
bne al, a2, oth€rExcp # Branch if not an illegal instruction exception
fcsrr to, mepc] # Load the current faulting instruction address
1w a0, 0(to) # Read the faulty instruction
jal decodelnst #
beqz 20, undefinedInst # Branch if really undefined and not possible to emulate
mv s@, a3 # Save index of rd
.. etc. .. #
jal emulateInst # Gets a@ = operation, al, a2 = operands; returns a@ = FP result
. etc. . # Write a@ on the stack into original register pointed by s@ (“write the destination register?”)
1w x1, 4(sp) # Restore all registers but zero and sp
.. etc. ..
1w x31, 124(sp)
addi sp, sp, 128
csrr t0, mepc # Load the current faulting instruction address
addi to, to, 4 # Increment to point to the next instruction (4 bytes for RV32/RV64)
mepc, tO # Write the updated value back to me

- Use mret to return




RISC-V Machine-Mode Interrupt Handling

mie (Machine Interrupt Enable)

-2 lists which interrupts the processor can take and which it must ignore
— MEIE: Interrupt-enable bit for machine-level external interrupts
— MTIE: Interrupt-enable bit for machine timer interrupts

mip (Machine Interrupt Pending)

- lists the interrupts currently pending < —~~
— MEIP: Interrupt-pending bit for machine-level external interrupts The subset we
— MTIP: Interrupt-pending bit for machine timer interrupts use in CS-200

mstatus (Machine Status) /
- holds the global interrupt enable, along with other state

— MIE: Interrupts are globally enabled when MIE = 1 and globally disabled when MIE = 0.
— MPIE: MPIE holds the value of MIE prior to the trap.

mstatus reserved MPIE | reserved | MIE reserved
mie reserved MEIE | reserved | MTIE reserved
mip reserved MEIP | reserved | MTIP reserved




Limit

3968
3972
3976
39860
3984
3988
3992
3996
4000
4004

Remember?

<

1 X2

We will definitely need to find a solution!
(In a few weeks’ time...)




Stack-Full Detection?

Save the next PC

—>
—_— Next PC _L
3 Register — branch Ioglc { — Logi 0
>| aw File S ALU result OgIC
—§——>1 Wren
o—>| wrdata Exception Handler Address —>{ 1
Limit

|

]
N

undef

watch
[ Ok, but we will do better... ]

IRQ

PC




Writing Handlers Is Very Very Tricky!

* Notice the problem of writing the handler for the above: we cannot use the stack!

* In general, one cannot touch any register and, maybe, one cannot touch the stack...

* \Various solutions:
— Reserved ordinary registers as in MIPS ($k© and $k1)
— Shadow registers in old processors (early x86 and before)
— Automatic switch to a known safe stack in x86

RISC-V solution is one dedicated CSR:
« mscratch (Machine Scratch) [not represented in the slide above]
- holds one word of data for temporary storage

* (Can be used to store a pointer to an empty region of memory or to a known safe stack




Speaking of the Stack...

funct: addi sp, sp, -12
Sw ra, 0(sp)
Sw s@, 4(sp)
Sw sl, 8(sp)

.. etc.

1w ra, 0(sp)
1w s@, 4(sp)
1w sl, 8(sp)
addi sp, sp, 12
ret

)




Protection: 1/Os Are Not for Everyone!

Controller [ o - Save the next PC

—>

S Plenty of

_)9 > control —> Next PC
> IR i —> signals branch Ioglc , 0

\ _; ) ALU result Logic PC —
Exception Handler Address —>| 1
mem access
Mode 0 = superuser
1 = user

watch | stack

0x1000 0000 =

Address of ( If it is a memory access to

a peripheral a particular address...

<—J Y undef | | | IRQ
—
|

... and it is being executed by an ordinary user = exception!



Levels of Privilege = Processor Modes

1. Distinguish at least two processor modes:
—  User mode for the user’s programs
—  Kernel, Supervisor, Executive, etc. for the OS (kernel)
—  RISC-V has up to three: Machine, Supervisor, User

2. Have a part of the processor state readable by all, but only writable with highest
levels of privilege; at least a
—  Current mode register
—  Other configuration registers (we will see some when discussing the Memory Hierarchy...)

3. Methods to switch mode back and forth

— (i) A dedicated instruction to trigger a software exception and (ii) an instruction to reset
—  RISC-V has ecall (system call) and mret/sret (return from exception)




Processor Tasks on Exception

What the processor should or could do when an exception is raised (depending on
processors and types of exceptions):
1. Mask further interrupts
Save EPC
Save information on the reason for the exception
Modify privilege level (exception handlers run in some privileged mode)
Free up some registers (e.g., copying them to shadow registers, where supported)
Jump to the handler

Most or all of these tasks are reverted implicitly with special instructions on exit
— mret in RISC-V reverts the privilege level and the interrupt enable

Some have to be reverted explicitly by the handler
— Programmers may want to unmask further interrupts as soon as it is safe

o s Wb




Priorities

We have seen that hardware interrupt controllers can help managing
priorities (which interrupt is more urgent to serve?)

Yet, this only affects the order IRQs are presented to the processor. But we
may also want to serve a high-priority interrupt while serving a lower-
priority one

Alas, there is only one mepc and mcause register, and this is why, as soon
as the processor takes an interrupt, it must disable further interrupts

What can we do?

— Save critical information about the interrupt (mepc, mcause, mstatus) on some
safe stack, so that CSRs can be overwritten by further interrupts

— Manually reenable interrupts (mstatus) without returning from the handler




Writing Handlers Is Very Very Tricky!

* Writing exception handlers is a difficult task!
— Maybe the stack cannot be used (e.g., the exception results from a stack overflow)

— Maybe the exception handler cannot be interrupted (e.g., the handler uses static
locations to save data including mscratch and is therefore a nonreentrant
procedure)

— Maybe the system cannot withstand not serving interrupts for a long time (e.g.,
|/Os buffers fill up)

* Buggy device drivers from vendors of peripherals (invoked by the
interrupt handler of the operating system and running in some privileged
mode) are often responsible for operating system instability

- This is why Microsoft formally verifies and certifies device drivers



Processor Design Issues with Exceptions

Handling exceptions is one of the biggest challenges of high-performance
processor design

Great difficulties in determining the exact state of execution and
supporting a precise restart mechanism

Older processors did not support at all precise exceptions—every
exception was a terminating one, and thus things were easy

More later in CS-200 and in elective courses...




Back to Our A/D Converter

A/D Converler MCa38000

DV p———

START
5700 8 poll: 1w t0, 4(t1) # t0 = DV signal
- beqz t9, poll # wait until done
{DTACK

=OxFFFFF4

[ Inefficient! ]

=0xFFFFFO

=0xFFFFF8

Data
Address




Example:
Better A/D Converter Interface

* Improve the interface to the A/D converter so that:
— Any access (R or W) to address OxFFFFFO starts a new conversion

— Upon completion, the A/D converter raises an interrupt through the appropriate
interrupt request signal of the processor

— The result of the conversion can be read by the processor at address OxFFFFF8




Example:
Simple IREQ and IACK Mechanism

e Suppose that our 8-bit processor has an internal interrupt controller with
various IREQ/IACK signal pairs for I/O interrupt requests

* We have been assigned for our ADC these:

— IREQ3: input; dedicated to our peripheral to request attention

— IACK3: output; used by the processor to sighal to our peripheral that the request is
acknowledged and is being served

Clock Remains active until

acknowledged
Is activated Interrupt L : j
asynchronously Tﬁ’é‘é‘gﬁt \k \

Peripheral Is also deactivated
: : : : : asynchronously
e, | : i Y/ Processor |

Acknowledge ; ; / \
(IACK) ; ; ;




Circuit with IREQ/IACK

Processor
A/D Converter
DV b— — |REQ3
START
— |ACQ3
8
D7-D0
n /DTACK
q /AS
Fe=ll vauves n
D7-D0 A23-A0
— =0xFFFFFO =0xFFFFF8
o :ﬁﬁ
Address



A Better A/D Converter Interface

Processor
A/D Converter 1
I S
ov b {> L, © IREQ3
Rst
START
IACQ3
8
D7-D0
¢ /DTACK
qd /AS
Fe=ll vauves o
D7-D0 A23-A0
— =0xFFFFF0 =0xFFFFF8
s :ﬁ:
Address



A/D Converter: startADC

startADC: lui t0, Ooxfff
addi to, to, oxffe # t0 = oxfffffo
Sw zero, 0(t0) # start conversion

ret




Software: handler

31

mcause

Machine external interrupt




handler:

restore:

addi
sw
sw

Sp,
X1,
X3,

. etc.

SW

csrr
bgez
slli
srli
1i
bne

jal
jal

1w
1w

x31,

SO,
SO,
SO,
SO,
sl,
SO,

A/D Converter: handler

sp, -120
e(sp)
4(sp)

116(sp)

mcause
handleExceptions
so, 1

s@, 1

11

s1, handleOtherInts

readADC
insertIntoBuffer

X1,
X3,

. etc.

1w
addi

mret

x31,

Sp,

0(sp)
4(sp)

116(sp)
sp, 120

Save all registers but zero and sp

Read exception cause
Branch if not an interrupt (MSB = @, looks like zero or a positive number..)
Get rid of the MSB of s@, so that what is left is the cause

sl = external interrupt cause
Branch if not an external interrupt

Returns a® = ADC result
Gets a@ = value to add to a circular buffer

Restore all registers but zero and sp




A/D Converter: readADC

readADC: 1i t0, oxfffffo # to = oxfffffo
1w a0, 8(t0) # get ADC data output

ret




A/D Converter: insertIntoBuffer

.section .data

.equ bufferSize, 1024 # Define buffer size (must be a power of two)
.equ  bufferBytes, bufferSize * 4 # Compute the total size in bytes for the buffer
bufferPointer: .word © # Initialize the pointer to index ©
buffer: .space bufferBytes # Allocate space for bufferSize * wordSize bytes

.section .text

insertIntoBuffer: la t0, bufferPointer # Load address of bufferPointer into to
1w tl, 0(t0) # Load current buffer pointer into t1
la t2, buffer # Load base address of the buffer into t2
s11i  t3, t1, 2 # Multiply buffer pointer (tl) by 4 to get byte offset
add t4, t2, t3 # Add offset to buffer base address (= next word)
sw ao, o(t4) # Store a® into buffer at calculated position
addi t1, t1, 1 # Increment buffer pointer by 1
1i t5, bufferSize - 1 # Load bufferSize - 1 into t5 (mask for power of 2)
and tl, t1, t5 # Apply bitwise AND to wrap around
sw tl, 0(t0) # Store updated buffer pointer

ret




References

Patterson & Hennessy, COD — RISC-V Edition
— Chapter 4; Section 4.10 only until p. 335.

— Chapter 5; Section 5.10 only bottom of p. 458 and bottom of p. 460,
and Section 5.14 (not the fence stuff).
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